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Abstract—Body sensor networks (BSN) are emerging cyber-

physical systems that promise to improve quality of life through 

improved healthcare, augmented sensing and actuation for the 

disabled, independent living for the elderly, and reduced 

healthcare costs. However, the physical nature of BSNs introduc-

es new challenges. The human body is a highly dynamic physical 

environment that creates constantly changing demands on 

sensing, actuation, and quality of service. Movement between 

indoor and outdoor environments and physical movements 

constantly change the wireless channel characteristics. These 

dynamic application contexts can also have a dramatic impact on 

data and resource prioritization. Thus, BSNs must simultaneous-

ly deal with rapid changes to both top-down application re-

quirements and bottom-up resource availability. This is made all 

the more challenging by the wearable nature of BSN devices, 

which necessitates a vanishingly small size and, therefore, ex-

tremely limited hardware resources and power budget. Current 

research is being performed to develop new principles and 

techniques for adaptive operation in highly dynamic physical 

environments, using miniaturized, energy-constrained devices. 

This paper describes a holistic cross-layer approach that ad-

dresses all aspects of the system, from low-level hardware design 

to higher-level communication and data fusion algorithms, to 

top-level applications. 

I. INTRODUCTION 

Body sensor networks (BSN) are emerging cyber-physical 

systems that have the potential to revolutionize many aspects 

of life. Physiological parameters of the human body can be 

used for real-time medical monitoring, and longitudinal data 

accumulated from many individuals can help diagnose and 

treat disease. This information can be used to augment bodily 

functions through drug delivery, augmented sensory stimula-

tion for the deaf or blind, and support for the movement of 

prosthetic limbs. The greater context of the body such as 

social interactions and location can also be sensed and fused 

with physiological data for improved interpretation and 

actuation. Overall, BSNs promise to improve quality of life 

through improved health, augmented sensing and actuation for 

the disabled, independent living for the elderly, and reduced 

healthcare costs.  

However, the physical nature of BSNs introduces new chal-

lenges. The human body is a highly dynamic and unpredicta-

ble physical environment that creates constantly changing 

demands on sensing, actuation, and quality of service (QoS). 

For example, a BSN application will likely perform different 

operations when a person walks, sleeps, exercises, or has a 

medical emergency, and will therefore use different sen-

sors/actuators and will have different requirements on the 

fidelity, confidence, and latency of data. At the same time, 

rapid physical movements of the body constantly change the 

network topology, wireless channel characteristics, and 

opportunities for energy harvesting. Thus, BSNs must contin-

uously adapt to rapid changes in both top-down application 

requirements and bottom-up resource availability.  

To further complicate matters, the wearable nature of BSN 

devices necessitates a vanishingly small size, and therefore 

extremely limited hardware resources and power budget. An 

example of a currently deployed BSN for the sick and elderly 

is the TEMPO device shown in Figure 1 [1]. TEMPO is a 

custom inertial BSN developed at the University of Virginia 

that provides sensing with six degrees of freedom (three axes 

of both linear acceleration and rotational rate) and wireless 

data streaming in the form factor of a wristwatch. With such a 

device the most common feedback from users is to reduce the 

form factor and extend the time between battery recharges [2]. 

BSN devices should ultimately have extremely small volumes 

of 1 cm3 or less. Battery energy density, however, does not 

scale well down to these sizes. This precludes the use of many 

existing solutions that deal with dynamic environments, such 

as the protocols used for cell phone communication today that 

overpower channel dynamics with conservative coding and 

large transmission power. The target size for BSN devices 

limits the energy budget to the range of 10’s to 100’s of 

Joules, 2-3 orders of magnitude less than a cell phone battery. 

The main goal of this paper is to present a vision for BSNs 

that incorporates principles and novel ideas across all layers of 

the system and that are required to meet CPS challenges. 

Section II surveys two important aspects of related work, but 

this paper is not a comprehensive survey of BSNs. Section III 

then presents new principles and techniques for adaptive 
 

Figure 1. An example of a currently deployed BSN for the sick and elderly is 

the TEMPO device. 
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operation in highly dynamic physical environments. This 

includes a holistic cross-layer approach that simultaneously 

addresses all aspects of the system, from low-level hardware 

design to high-level communication and data fusion algo-

rithms. Several open research questions are highlighted in 

Section IV. 

II. RELATED WORK  

CPS challenges for a BSN arise from three domains: appli-

cations, devices, and wireless communication. Section II.A 

reviews related work on applications. Device challenges come 

from the need for small size and low power budgets. Section 

II.B overviews device hardware related work. 

A. BSN Applications 

BSNs are used in a growing list of applications including 

fall detection, gait analysis, monitoring the heart with ECG, 

pulse oximetry, and detecting Parkinson’s episodes and their 

severity. Many commercial products are available. For exam-

ple, Human Recorder Co. LTD and LifeSync are two compa-

nies selling wireless ECGs, FaceLake and NatureSpirit are two 

available pulse oximeter products, and many companies 

including Wellcore and Philips sell fall detection products. In 

keeping with the holistic theme of this paper, we focus here on 

a key cross-layer issue using fall detection as an example. 

In BSN fall detection, existing work shows how solutions 

that expand to include more information from multiple sensors 

and from higher layers in the system hierarchy (e.g. context) 

provide better results. As evidence, consider that some fall 

detectors try to detect the fall event by monitoring thresholds 

in acceleration. For example, Prado [3] uses a four-axis 

accelerometer located at the height of the sacrum. Kangas [4] 

studied acceleration of falls and activities of daily living 

(ADLs) from the waist, wrist, and head, and showed that 

measurements from the waist and head were more useful for 

fall detection. Bourke [5] placed two tri-axial accelerometers 

at the trunk and thigh and used upper and lower thresholds for 

both the trunk and thigh. Exceeding any of the four thresholds 

indicated a fall had occurred. The problem with only using 

accelerometer thresholds is that other activities such as sitting 

down quickly or walking vigorously on stairs also generate 

large vertical acceleration, causing many false positives.  

By adding information on body orientation from other sen-

sors, new fall detectors provide a more accurate solution. 

Noury [6] developed a fall detector BSN consisting of three 

sensors: a tilt sensor to monitor body orientation, a piezoelec-

tric accelerometer to monitor vertical acceleration, and a 

vibration sensor to monitor body movements. Noury [7] also 

developed a sensor with two orthogonally oriented accelerom-

eters and used this system to monitor the inclination and 

inclination speed to detect falls. Li [8] combined accelerome-

ters (exploiting thresholds), gyroscopes (exploiting postures) 

and context information (enabling different thresholds to be 

used in different settings and postures) to further improve fall 

detection, showing a significant reduction in false positives. 

A related application example is using BSNs to identify 

individuals at a high risk for falls in order to intervene before a 

fall event occurs. BSNs are therefore being deployed to 

continuously and non-invasively collect gait and posture data, 

which can then be analyzed to study the fall risk mechanisms 

in various populations and ultimately identify high fall risk 

individuals. For example, TEMPO has been used to classify a 

“shuffle” gait, which is a prominent cause of falls in the 

elderly, but the natural variability of gait both within and 

between individuals complicates the processes preceding 

classification, such as feature identification, selection, and 

extraction. Thus, robust and generalized signal and infor-

mation processing methods are needed to classify inertial gait 

data both on- and off-node. Using data collected on subjects 

with a TEMPO node on the right ankle, shuffle gait classifica-

tion using information-theoretic feature extraction and neural 

networks yielded nearly 98% accuracy of classifying normal 

from shuffle gait with as few as two features from a gait cycle 

and one measurement location (i.e. ankle) as training and test 

vectors [9]. These principles were also applied to a human 

subjects study investigating fall risk in end stage renal disease 

(ESRD) patients on hemodialysis (HD), who experience 

dramatically higher fall rates than the general population [10]. 

The study used non-invasive, portable gait, posture, strength, 

and stability assessment technologies (including TEMPO) to 

extract mobility parameters known to predict fall risk in the 

general population both pre- and post-HD for inter-HD peri-

ods of two and three days. The results indicated that HD 

treatment influenced strength and mobility, and inter-dialysis 

period influenced pre-HD profiles. These results are now 

being used to identify ESRD patients on HD who are at higher 

risk for falling and target them with interventions specifically 

designed for this patient population. 

These examples illustrate the numerous application-oriented 

challenges and opportunities facing BSNs, from coordinated 

sensing to information extraction from raw sensor data. 

Solutions will require input from domain experts to ensure that 

the evolving technologies address the true application re-

quirements. This is true not only in medical applications, but 

also in those targeting fitness and entertainment. With the 

proper coordination between BSN technology development 

and emerging application requirements, BSNs are well posi-

tioned to deliver the biofeedback and interactivity necessary 

for the applications of the future. 

B. Hardware for BSNs 

In this section, we review existing BSNs built from com-

mercial-off-the-shelf (COTS) parts and custom designed 

application specific ICs (ASICs) and discuss their limitations 

and strengths.  

COTS BSN nodes generally consist of separately packaged 

components integrated onto a printed circuit board (PCB). 

These COTS designs are often based on general wireless 

sensor network (WSN) motes and share characteristics of 

general sensor nodes. However, BSN design requirements 

differ distinctly from WSNs, so BSN nodes largely based on 

WSNs exhibit inefficiencies, most notably in power consump-
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tion. Most COTS platforms include sensors, a front end analog 

amplifier, a digital filter, a microcontroller, a battery, a refer-

ence oscillator, and a radio transceiver. COTS nodes provide 

solid development platforms that are flexible and easy to 

build, granting rapid access to prototypes and offering pro-

grammability to facilitate changing application requirements, 

processing algorithms, measurement methods, and communi-

cation protocols. For this reason, COTS based platforms are 

ideal for the development of accurate data acquisition ap-

proaches and for clinical data collection. The form factor of 

COTS based platforms can be small (volume <1 cm3, weight 

<100 g [11]) and wearable, using either skin mountable [12] or 

Velcro chest strap designs [13], although many COTS nodes 

remain several cm’s on a side. Their energy inefficiencies may 

ultimately limit the full deployment of COTS designs in a 

wide range of emerging healthcare applications, as it is diffi-

cult to prolong the battery lifetime of a COTS platform to 

much more than 1 day [14][15].  

Many COTS nodes employ Bluetooth, Zigbee, or other 

radios commonly seen in WSN motes. A survey across differ-

ent platforms shows that the 868 MHz unregulated band 

[14][16] and the 2.4 GHz band [15] are popular for COTS 

platforms, since they provide easy integration with the larger 

system. The power consumption of these radios makes the 

COTS node power alarmingly high, often reaching the several 

100 mW range [11][17][16] (500 mW for [17]). Use of these 

radios, while convenient, supports data rates that dramatically 

exceed the requirement for most BSN applications. The 

frequency of physiological signals typically range from the 1 

Hz to100’s kHz range [11], and data rates in transmission and 

receiving typically only range up to 100’s of kpbs [14][17]. A 

more suitable radio would help to reduce the power of COTS 

nodes, but convenience seems to trump power as the parame-

ter influencing radio choice in most existing COTS designs. 

Non-radio components do not affect the overall COTS 

power consumption significantly [14]. Instead, the selection of 

other components such as the analog front end and microcon-

troller focus on accuracy of measurement, quality of attained 

signals, noise rejection, and flexibility of programming. For 

example, [16] employs Microchip’s 5 V PIC processor and 

[17][12] use TI’s 3.6 V MSP430 Few developers of COTS 

nodes discuss attempts to improve the energy or power effi-

ciency in on-node computation or control logic. The analog 

front end and sensors also employ advanced industry compo-

nents for their accuracy and noise rejection [16][13]. This 

design strategy is typical of COTS BSNs nodes, as their main 

focus to date appears to be attaining clinical quality signal 

processing to assess the methodology being explored and 

prototyped on the node. 

With the power problem becoming increasingly identified 

as a major bottleneck, power and energy modeling techniques 

will aid in power optimization methods. With careful optimi-

zation, COTS platforms can achieve self-sustained, autono-

mous operation with an energy harvester. For example, [18] 

was able to accomplish a 15 fold power reduction from 7.1 

mW to 450 µW by optimizing knobs from the application, 

system, and hardware levels, despite having a general COTS 

architecture such as incorporating a COTS micro-controller 

and radio. In rare cases, harvesting can provide this much 

power. 

In summary, COTS based designs are characterized by easi-

ly programmable components focused on delivering high 

quality clinical data. Most COTS designs use simple architec-

tures with little to distinguish them from WSN nodes, which 

reflects designers’ focus on utility with low power design as a 

secondary concern. COTS radios dominate node power and 

are over provisioned for BSN applications, pointing to the 

need for using lower power, domain specific radios and 

employing system level methods to reduce the contribution of 

radio power to the total. Battery lifetime in COTS designs is 

still too short (~1-3 days) to allow for wide spread deployment 

of these nodes across the full spread of BSN applications.  

ASIC based BSN chips swing to the other end of the spec-

trum from COTS designs. These custom nodes are application 

specific instead of flexible and generic, which follows natural-

ly from the need for excellent efficiency to extend system 

lifetimes. Custom BSN chip design is still an emerging field, 

and the number of complete systems in the literature is lim-

ited. One reason may be that a complete BSN node requires 

optimized blocks that each require unique expertise to develop 

efficiently. An implantable 0.5×1.5×2 mm3 intraocular pres-

sure sensor in [19], designed to provide continuous feedback 

for glaucoma treatment, incorporates a solar cell, a MEMS 

pressure sensor, and a microbattery with a low power SoC. 

The chip converts the capacitive output of the MEMS sensor 

to a digital value with a 3.6 V, 7 µW switched capacitor 

circuit, and an 8 bit 0.4 V, 90 nW, 100 kHz microcontroller 

stores the data in a 4 kb SRAM. An FSK based transmitter 

sends one bit 40 mW bursts every 131 µs. With > 10 hours of 

indoor light a day and measurements less than every 15 

minutes, the node can run perpetually from harvested energy. 

A glucose sensor on a chip with a wireless transmitter is 

integrated with a contact lens for diabetes monitoring in [20]. 

The sensor is inductively powered by a reader held near the 

eye, communicates with a 2.4 GHz LSK scheme, and con-

sumes less than 3 µW. It utilizes a sub-µW regulator and 

bandgap reference. The degree of energy autonomy shown in 

these two designs is ideal for BSNs, and both designs show 

how block by block optimization and limited flexibility can 

lead to impressive energy efficiency and miniaturization.  

An ECG system in [21] combines a sensor chip housing an 

analog front end and ADC with controller chip that is integrat-

ed onto a flexible band covering most of the chest. The band 

inductively powers the sensors, which adhere to the body in 

small disposable bandages underneath the chest band. Each 

ECG sensor chip [22] consumes an average of 12 µW for the 

analog front end, clock generation, regulator, and ADC, and 

the controller chip uses 5.2 mW (for aligned inductors) while 

powering a sensor and processing the ECG signal [21]. Both 

the power consumption and design complexity are dominated 

by the analog circuits for sensing and communication. 

These same trends of application focus and extreme optimi-
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zation emerge in custom components for BSN use. A proces-

sor and timer targeting low duty cycle sensing in [23] optimiz-

es sleep power down to below 30 pW and only uses ~300 fW 

during active operation at 106 kHz. In another design, a 

programmable analog front end for biomedical signals in [24] 

integrates clock generation, tunable filters, and a 12b SAR 

ADC to produce digitized output samples. The chip consumes 

895 nW when acquiring raw ECG data through the front end.  

So far, few ASIC nodes leverage system level requirements 

to reduce power in the radio or analog blocks, instead follow-

ing the COTS lead by focusing on extracting and communi-

cating raw data. There are a few exceptions. For example, a 

mixed signal SoC integrating an analog front end and ADC 

with an 8 bit PIC processor operating in sub-threshold [25] 

leverages 700 nW processing to reduce the burden on the 

system radio (not integrated on this chip). The processor uses 

only 1.5 pJ/instruction at 280 mV and 450 kHz, and it can 

extract instantaneous R-R heart rate intervals from a raw ECG 

sampled at 1 kHz. Transmitting this information instead of 

raw ECG reduces the wireless data rate by 500X. Also, the 

processor can successfully maintain accurate computation of 

heart rate even when it reduces the bias currents in the input 

amplifier and ADC, causing those analog components to 

suffer in terms of their block level parameters but permitting 

the system to function with high fidelity. This allows the full 

analog front end, ADC, and digital power to drop to only 2.6 

µW during heart rate extraction and raw ECG acquisition [25]. 

Similarly, the EEG processing node in [26] includes an analog 

front end, ADC, and processor for feature extraction. The ~4.3 

µW power of the chip is dominated by the 3.5 µW instrumen-

tation amplifier. Using the chip in combination with a Chip-

Con radio shows that on node feature extraction saves 14X 

system power by reducing the communication load.  

Since radios consume so much power when they are active, 

moving to lower power radio designs is important. Recent low 

power radios and wake up radios [27], (reported in JSSC, 

ISSCC, and Symp. on VLSI Circuits) tend to target data rates 

between 100 and 200 kbps. They typically use the 2.4 GHz 

ISM or 1.9 GHz PCS bands, use simple modulation schemes 

such as on-off keying (OOK), report sensitivities from -60 to -

80 dBm, and consume between 50 µW and 100 µW. Power 

for these radios appears to be independent of data rate but 

proportional to sensitivity. Figure 2 shows that a 10x increase 

in power leads to roughly a 100x increase in sensitivity. This 

implies that lower sensitivity radios can offer much lower 

power, but lower sensitivity may limit communication to 

periods with better channel characteristics, which is a motiva-

tion for the adaptive techniques we describe later in this paper.  

In summary, initial forays into custom design for BSN 

nodes show that extremely energy efficient designs are possi-

ble when the hardware is tailored to a specific application and 

heavily optimized. We observe that opportunities for addition-

al substantial energy savings may be possible by using appli-

cation requirements at higher levels in the design hierarchy to 

adjust how the hardware operates. This indicates the potential 

benefits of supporting ultra low power processing and differ-

ent power modes than can adjust energy consumption of the 

hardware as application needs vary. 

III. NEW PRINCIPLES AND TECHNIQUES 

Current research is underway to develop a combination of 

software and hardware principles and architectures that span 

from a new system-on-chip (SOC) based BSN platform to the 

application layer in order to provide an energy-efficient 

solution for body sensors that adapts to the CPS challenges of 

a highly dynamic environment. Building an efficient CPS 

system for this type of application requires that we analyze 

issues at every layer of the hierarchy and then iterate to see 

how the issues and requirements at one layer influence other 

layers. We have undertaken this exercise, and in this section 

we propose a hardware platform that we believe contains 

features important to optimizing the system as a whole. 

Starting at the hardware level, Section III.A describes the SOC 

hardware platform, which will have 3 unique architectural 

aspects identified from our cross-hierarchy analysis to reduce 

energy usage: (a) an asymmetric radio architecture that uses 

different bands and modulation for uplink and downlink, (b) 

low-voltage ICs and hardware accelerators for ultra-low 

power, adaptive computation, and (c) a low-power receive-

only wakeup radio that is highly-tuned to the GSM synchroni-

zation symbol, for high accuracy, low-power time synchroni-

zation.  

To maximally exploit this architecture, we identify three 

cross-layer approaches to enable adaptive, resource-efficient 

operation (a) creating new networking protocols and data 

fusion algorithms that exploit the asymmetric, full-duplex 

radio architecture for adaptive, efficient distributed operations 

in dynamic wireless environments (III.B), and (b) modeling 

and predicting the wireless channel based on a combination of 

 

 
Figure 2. State of the art low power radios and wake up radios. Power is 

independent of data rate but roughly proportional to sensitivity with a floor of 

about 50 µW. 
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low-level cognitive radio techniques and high-level contextual 

information about the physical world (III.C), and (c) creating 

an integrated framework for sensing, coding, and signal 

processing to adaptively balance top-down QoS demands and 

bottom-up resource and energy availability (III.D). 

A. An Ultra-low Power BSN Platform 

 The extreme energy and form factor constraints of weara-

ble BSN devices necessitate a fundamental departure from the 

traditional design of wireless embedded sensing devices. 

Figure 3 illustrates the energy profile of a typical wireless 

embedded platform today, excluding sensor power: wireless 

transmission and reception consume the most energy, fol-

lowed closely by computation. What is required is a new BSN 

hardware platform to directly address the dominant energy 

consumers using a custom system on chip (SOC) design that 

incorporates several key innovations: asymmetric RF commu-

nication (to best account for data transfer profiles), adaptive 

low energy hardware (to adjust to changes in the BSN mode or 

environment), and synchronization from existing infrastruc-

ture (to reduce RF receiver energy during synchronization). 

This unique architecture is expected to reduce total energy 

consumption by 1-2 orders of magnitude over existing archi-

tectures. The basic SOC architecture is illustrated in Figure 4. 

A programmable micro-controller provides the heart of the 

hardware system and interfaces with I/O, memory, and op-

tional hardware accelerators. It also interfaces with an asym-

metric radio that uses different bands and modulation for 

transmission and reception. The receiver can double as a clock 

harvester, and a digital delay locked loop (DLL) helps the chip 

to remain locked to an external, harvested GSM strobe signal 

even when that signal becomes temporarily unavailable. On 

chip voltage regulation allows the operating voltage to be 

adjusted to meet energy and performance demands. External 

energy harvesting mechanisms (like thermal gradients) can be 

added by including a voltage boost regulator. The specific 

details of the SOC architecture would be tuned for the needs 

of each BSN application, but the illustration in Figure 4 

represents a basic template that captures the major features of 

an energy efficient hardware platform.  

Asymmetric Wireless Communication 

The radio architecture is based on two key observations 

about BSNs. First, BSNs typically use a star-network topology 

in which the central hub (e.g. a cell phone) typically has more 

energy resources when compared to the remote nodes, which 

may be severely energy-constrained. Second, the requirements 

on data rate for communication from sensor node to controller 

(uplink) is higher than that from controller to sensor node 

(downlink) because the uplink carries the sensed information 

(data), while the downlink may carry configuration instruc-

tions or similar, low-bandwidth information. 

The system uses separate RF strategies for uplink and 

downlink that are optimized for these asymmetric energy 

budgets and data rates. Narrowband radios designed to com-

municate over a range that is less than 10 meters typically 

have equal power consumption in transmit and receive modes 

[28]. Contrast this to pulsed-UWB radios where the transmit-

ter power is typically 100x lower than the receiver power [29]. 

Furthermore, the energy/bit of UWB transmitters is typically 

around 50 pJ/bit, compared to 25 nJ/bit for Bluetooth [28], and 

UWB energy/bit is independent of the data rate, as shown by 

 
Figure 3. Comparison of energy consumed per bit broken down by task in a 

wireless sensing node using current state-of-the-art hardware [28][51][52]. 
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Figure 4. Template for system on chip (SOC) that includes asymmetric RF, programmable ULP processing, and scavenging synchronization signals to reduce 

energy consumption. 
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Figure 5. Recently reported UWB transmitters show constant energy per bit 
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the plot of recent UWB transmitter publications in Figure 5. 

UWB receivers, on the other hand, typically consume 1-to-10 

nJ/bit. UWB is, therefore, suitable for transmission from the 

energy-constrained node, but not necessarily for reception. 

Low-power narrowband radios can typically achieve lower 

powers than UWB receivers, and therefore are suitable for 

reception on the node. The potential energy savings of using a 

UWB transmitter and a low-power narrowband receiver 

relative to Bluetooth are illustrated in Figure 6. This allows the 

node to communicate while using the least amount of re-

sources, at the expense of an acceptable increase in power 

consumption of the access point. Furthermore, the signal 

transmitted from the node can be used to measure the channel 

quality, as discussed in Section III.C.  

Adaptive Hardware for Low Energy Computation 

Two ultra-low power techniques can be used to reduce the 

energy consumption required for on-node computation and 

signal processing: (1) hardware accelerators and (2) low-

voltage circuit operation. By reducing the energy of on-node 

computation, this architecture will expose new energy and 

latency trade-offs between transmitting raw data and using on-

board compression or feature extraction. 

 A hardware accelerator uses a dedicated circuit to imple-

ment a specific function, sacrificing functional flexibility in 

that component for a 1000x reduction in energy consumption 

compared to a general-purpose micro-controller [30]. Low-

voltage and sub-threshold circuit operation maintains func-

tional flexibility and reduces the energy consumption by over 

10x compared to operation at the normal voltage [31]. Figure 

7 shows example savings for FFT hardware and CPUs in 

terms of both energy and CPU cycles. In prior work, success-

ful sub-threshold ICs that implement logic [31], memory [32], 

and complete micro-controllers [25] as well as systems that 

adapt energy consumption by moving in and out of sub-

threshold [33] were demonstrated. In the future, it is necessary 

to analyze the processing requirements for different BSNs and 

develop policies for deciding when to apply low voltage 

circuit techniques based on the impact for total energy con-

sumption of the system. New research into context sensitive 

algorithms will determine how much on-node processing 

makes sense for a given application, and how that information 

can be combined with simulations of hardware energy con-

sumption to identify specific sections of the processing that 

are best implemented using hardware accelerators. For exam-

ple, control algorithms will likely remain on the micro-

controller, but data processing routines (e.g. compression, 

FFT, etc.) may be best suited for hardware acceleration. In 

cases where processing energy remains negligible relative to 

communication, hardware acceleration is unnecessary. In 

cases where large amounts of processing increase the compu-

tation energy substantially, hardware acceleration can be used, 

and it is also possible to apply low voltage circuit design 

techniques to minimize energy consumption (e.g. [31]). 

Low-power Time Synchronization Harvesting 

Time synchronization can allow nodes to reach ultra-low 

duty cycles while still successfully communicating at pre-

determined rendezvous times. However, the reduction of total 

system energy is limited by clock drift: nodes must periodical-

ly resynchronize over the wireless channel, causing energy 

overhead. The energy overhead of synchronization is ampli-

fied in energy-starved BSNs, where nodes often go long 

periods with their wireless radios off in order to conserve 

energy. Synchronization energy overhead has been generally 

recognized as a critical factor in sensor networks, and efforts 

to reduce the synchronization time for narrowband [27] and 

UWB [34] radios have been presented. Most notably, a syn-

chronization strategy using a 52 μW wake-up receiver has 

been reported, where a wake-up beacon signal generated 

within the network is used for coarse synchronization of the 

nodes [27].  

An alternative to using wake-up radios to synchronize 

BSNs is to extract timing signals from one of the ambient 

wireless signals visible to the BSN. We refer to this as clock 

harvesting, and the advantage is the high-power wake-up 

signal is not generated by an access point in the network, but 

rather is harvested from some other source. For this purpose, 

we have developed a clock-harvesting receiver (CRX) [35] 

that synchronizes BSN nodes based on an external GSM 

signal. The CRX extracts a 21 Hz signal embedded within 

every broadcast channel of the GSM mobile phone standard. 

GSM was selected as a wake-up source because it provides 

a pervasive and practical signal for use in a BSN. Every GSM 

cell contains a high-power broadcast channel operating at a 

fixed frequency. Indoor measurements in a university building 

show the received power of this channel ranges from -65 dBm 

 
Figure 6. Our proposed asymmetric receive and transmit strategy saves 50x 

and 500x energy/bit over conventional RF strategies. 
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Figure 7. Hardware accelerators and low-voltage digital circuits dramatically 

reduce the energy relative to existing on-chip computation. 
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to -95 dBm. Embedded in every broadcast channel transmis-

sion is a tone burst sent periodically for synchronizing cell 

phones. This signal may be extracted with a low-power 

receiver, and used to synchronize the reference clocks of BSN 

nodes. Figure 8 shows a block diagram of CRX to extract this 

signal. An off-chip SAW filter selects the 1900 MHz PCS 

band. The input is amplified and down-converted to an IF of 

250 kHz, then split into two paths, each with Gm-C bandpass 

filters that select the tone burst signal. The outputs of the 

filters are envelop-detected and compared, generating a digital 

clock output from the GSM signal. 

Figure 9 outlines the operation of the receiver in time. The 

GSM broadcast primarily transmits Gaussian minimum-shift 

keyed (GMSK) data. Approximately every 46 ms, a pure 

sinusoidal tone is transmitted. This tone burst lasts for 577 µs 

at an offset frequency of 67.7 kHz from the center of the 

channel. The filter stages in the CRX determine when this 

frequency burst is present by tuning them to overlapping 

halves of the broadcast channel. When data is transmitted by a 

GSM cell, power is spread over the entire channel, passing 

equal signal levels through each filter. During a tone burst, 

however, the signals captured along the two filter paths differ. 

This difference is then detected by the comparator. 

 A prototype CRX was fabricated in a 0.13 μm CMOS pro-

cess and operates from a 1V supply. The LNA can be tuned 

over a frequency range covering the 1900 MHz band, enabling 

the selection of any broadcast channel in the US. The meas-

ured clock error rate (CER), defined as the number of clock 

errors to the number of correct clock outputs, is 10-3 at an 

input power level of -87 dBm while the power consumption of 

the CRX is 126 μW. Proper operation was verified at input 

powers up to -5 dBm. The measured jitter at peak sensitivity is 

57 μs, but this reduces to 2 μs at higher input powers. In sleep 

mode, the leakage power of the CRX is 81 pW. This CRX was 

specifically designed with a low sleep mode power to enable a 

hierarchical synchronization strategy. This allows the CRX to 

be coarsely duty-cycled by a low-accuracy timer, and fully-

powered only momentarily around the 21 Hz GSM clock 

edges. 

B. New Network Protocols and Distributed Data Fusion 

Algorithms 

Numerous wireless protocols and sensor fusion algorithms 

have been designed for networks of low-power embedded 

devices, including neighborhood-based in-network processing 

[36], centralized aggregation [37], mobile agents, and auto-

matic program decomposition [38], among others [39]. How-

ever, the BSN hardware platform described above has several 

unique characteristics that preclude these or other existing 

techniques. First, the asymmetric radio architecture eliminates 

a basic primitive for wireless communication: the broadcast 

channel. This will affect protocols at all layers of the network 

stack that rely on channel sensing, broadcast messages, 

eavesdropping, and/or direct neighbor-to-neighbor communi-

cation. Second, the new platform has a very different resource 

and energy profile than existing platforms, which will change 

the design space of efficient BSN applications and protocols. 

For example, the cost of receiving is an order of magnitude 

higher than the cost of transmitting, which poses challenges 

for traditional MAC-style channel arbitration and limits the 

use of link-layer ACKs for reliable delivery and flow control. 

Novel low-power networking protocols and data fusion 

algorithms are required for BSNs using a holistic approach 

that percolates the unique characteristics of the BSN platform 

all the way up and down the application stack. For example, 

the potential for full-duplex master-slave communication can 

be used to perform out-of-band coordination between neigh-

boring nodes and to produce an emulated broadcast channel 

when necessary. These wireless primitives can be used to 

design a suite of network protocols for network discovery, 

transmission scheduling, and algorithms for leader election 

and the efficient calculation of aggregate statistics over a 

group of nodes can be developed. The end result is a catalogue 

of cross-layer protocols and algorithms that jointly optimize 

the costs and needs of sensing, data fusion, communication, 

and clock synchronization.  

 Once this catalogue is created, the system will use new 

techniques to adaptively tune the algorithms and dynamically 

switch between algorithms and protocols based on the proper-

ties of a given application and the current operating condi-

tions. These techniques will use both top-down contextual 

information as well as bottom-up resource information. For 

example, changes in heart rate or blood oxygen levels may not 

be a concern if the user is exercising, but could be a concern if 

the person is driving or has suddenly fallen. Top-down infor-

mation that the user is stationary (sleeping or in a vehicle) will 

lead to the use of algorithms and protocols tuned for low-

 
Figure 8. Block diagram of the clock-harvesting receiver that captures a 21Hz 

reference clock from the GSM broadcast channel. 
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Figure 9. Time response of a frequency burst from a GSM tower and the 

corresponding clock output of the CRX. 
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power steady state operation, such as time-synchronized 

sensing and rendezvous-based communication. On the other 

hand, the context of bodily motion (walking or running) will 

lead to the use of algorithms tuned for rapid topological 

changes and high channel dynamics, such as active neighbor 

discovery, channel monitoring and prediction, and delay-

tolerant networking. High-level bodily location, motion, and 

activities may also indicate the increased availability of energy 

harvesting and/or the availability of known network resources 

such as a cell phone or access point. This information can be 

used to trigger batch operations such as the upload of data 

logs, or the creation of high-fidelity data for periodic sensor 

calibration.  

New data fusion algorithms must also be used to exploit 

application logic and top-down sensing requirements to reduce 

total system energy through strategic data collection. The 

value of the data from one sensor may depend on the data 

from another sensor. For example, sensors that detect physical 

activity for diabetes may not be necessary if blood sugar levels 

have been detected to be normal. In these cases, the data 

fusion algorithms can automatically order the sensing and data 

processing to avoid using unnecessary sensors, increasing 

communication and data fusion but reducing total energy 

consumption. Thus, true bi-directional information flow is 

necessary: sensor data is necessary to detect the situational 

context, and the context can be used to decide which sensors 

should be used. 

C. Exploiting Periodic or Predictable Wireless Channels 

One key aspect of the physical BSN environment is that 

bodily motion will create bounded dynamics in the wireless 

channel due to bodily occlusions and the changing, but bound-

ed, proximity of devices attached to the body. This hostile RF 

environment can be handled by predicting and dynamically 

adapting to current wireless channel conditions, rather than 

reacting to them. The cost of supporting dynamic adaptation 

(e.g. by local processing) will be small relative to the savings 

provided from reduced wireless communication overhead 

from, for example, dropped packets or unnecessarily strong 

coding or transmission power. In order to realize these energy 

savings, cross-layer approaches to channel prediction and 

adaptation should incorporate both top-down context about 

user and bottom-up channel sensing information. 

The foundation for a channel prediction scheme can be a set 

of systematic experiments for BSN channel characterization. 

Preliminary experiments show high variation in the received 

signal strength between nodes at different locations on the 

body (Figure 10), and many other BSN channel modeling 

experiments corroborate these results [40][41][42]. Two 

generalized measurement setups for both narrowband (900 

MHz and 2.4 GHz) and UWB communication are most 

prevalent. The first method collects data using a vector net-

work analyzer measuring S21 between a transmitter on the 

body and a receiver (e.g. [41]). The second method records 

RSSI or LQI of a signal at a given sampling frequency (e.g. 

[40]). Path loss models are generated using curve/distribution 

fitting while second order statistics such as amplitude distribu-

tion, level crossing rate, and fade duration are measured as 

well [41]. Distributions such as lognormal, Rayleigh, Weibull, 

and Gamma, are all found to be a best fit in certain situations, 

but the most common fit is lognormal.  

 Due to the rhythmic nature of a body’s motion, channel 

periodicity is observed when test subjects are walking, run-

ning, or even trying to stand still [42][43]. Channel periodicity 

is seen in the collected data and its impact is reflected in the 

distribution models. However, these models do not provide 

insight into the impact of normal, uncontrolled movements on 

the shape and frequency of the channel. Figure 11 reports LQI 

data recorded using Motorola wireless sensor nodes in the 2.4 

GHz band. The dark blue line shows control data taken using a 

mechanical slider on a track, simulating someone’s arm 

swinging at a constant rate while walking. The time domain 

data shows a relatively consistent periodicity which results in 

the expected lognormal probability distribution function to its 

right. The red line in Figure 11 is 3 minutes of LQI data taken 

while a subject was working at an office desk with a transmit-

ter on the right wrist and a receiver at the left hip. Unlike most 

channel modeling experiments, the person in this test was not 

instructed to sit still. Due to the typical, random movement of 

the person during the 3 minute test, the channel model shows 

variation, but not the repetitive and predictable motion of the 

control setup. This is again reflected in the distribution to its 

right, but the binomial nature of the data makes a lognormal fit 

inaccurate.  

 Real world scenarios like the red line in Figure 11 motivate 

the need for an advanced channel modeling method beyond 

distribution fitting. This measurement illustrates that there 

may be long periods of time when the channel is exceedingly 

 
Test Number 1 2 3 4 5 6 7 

Rec. Power [dBm] -78 -75 -72 -72 -65 -68 -69 

 

Figure 10. Receive power between nodes for varying positions using 2.4 GHz 

radio (-12 dBm TX). 

 
Figure 11. Measured LQI on a controlled track (dark blue), and when sitting at 

a desk (red), with corresponding histograms. 
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good, and a low-power radio with poor sensitivity is sufficient 

for communication. There are also long periods of time when 

the channel is exceedingly bad, and wireless transmission 

should not even be attempted. The periodic channels from 

bottom-up channel measurements depend on the top-down 

context, including movement, activities, and locations. There-

fore, predictive channel models can be generated within a 

BSN by combining bottom-up channel measurements (e.g. a 

history of RSSI data) with top-down context information (e.g. 

a person is sitting vs. walking).  

Once the predictive channel models are created, techniques 

to collect both top-down and bottom-up information for 

channel prediction can be developed. The BSN sensors can be 

used to detect body context, motion, and activities. The use of 

this information in predicting channel quality can be consid-

ered when deciding whether sensor data should be stored, 

compressed, or reported to the BSN hub node. For bottom-up 

channel sensing, the hub will sense the quality of each node-

to-hub channel. For example a known preamble could be 

transmitted prior to each data packet that allows the receiver to 

measure RSSI, which provides the information to assess the 

quality of the link.  

Once sufficient history of the channel quality is known, and 

a short-term future channel quality predicted by the BSN hub, 

the predictions must be sent to the relevant nodes via the 

asymmetric downlink. The rate at which nodes are updated 

can be determined by the BSN hub, and the estimate for next 

channel prediction can be included with the prediction itself, 

when possible. The mechanisms for making channel predic-

tions should use both top-down context and bottom-up chan-

nel sensing. For example, history could be collected on chan-

nel data and used to predict future link quality. If the channel 

quality should get better or worse before the next update, the 

coding rate may become too high or low, bringing an unneces-

sary cost of lower data fidelity or lower packet success rates, 

respectively. Conversely, a highly dynamic channel is likely to 

remain so, such as a body area channel when the wearer is 

walking or running. In such a case, a node can either receive 

more frequent updates, leverage periodicity in the channel 

quality, or use conservative coding techniques as a function of 

the worst-case channel conditions. To maximize performance, 

a decision theoretic framework can be used that weighs the 

balance of conservative channel estimates versus the cost of 

increased update rates. These decisions will be based not only 

on performance characteristics, but also on current and future 

QoS requirements at the application level. 

Once a node has been notified of its predicted channel qual-

ity, it must adapt the communication parameters. These 

adaptation schemes should involve high-level network proto-

cols and distributed data fusion algorithms, as discussed in 

Section III.B. In situations where a constant packet transmis-

sion rate must be maintained, adjusting coding rates based on 

channel quality would affect data processing output rates and, 

as discussed in Section III.D., the resulting data fidelity. This 

competing relationship is central to the cognitive adaptation of 

a node to its channel condition. 

Regardless of the application requirements and operating 

environment for a given system, it is possible to use a buffer 

(e.g. FIFO) between the data processor and the code generator 

to manage these relationships. The processor pushes data into 

the buffer at its data processing output rate, and the code 

generator pulls it out based on its coding rate. It is desirable to 

maintain a specific buffer occupancy set-point throughout 

operation. Therefore, if the channel quality update results in a 

coding rate increase to maintain a high packet success rate 

across a bad channel, the rate at which data is pulled from the 

buffer will be reduced, forcing the processor to reduce its data 

processing output rate. Conversely, if the data processing 

output rate should increase based on the dynamic input data, 

the increased buffer occupancy would need to be placated by a 

reduced coding rate, potentially reducing the packet success 

rate. An overarching node controller would need to manage 

such a competition. Such policies could be incorporated into 

node-level operating systems, such as the PixieOS for wireless 

sensor networks [44].  

D.  Adaptable Sensing, Coding, and Signal Processing 

The ultimate efficacy of a BSN application is dependent on 

the fidelity of the collected data, but the collection and wire-

less transmission of this data pose the greatest challenges for 

achieving the battery lifetimes required by the same applica-

tions. It, therefore, becomes necessary to model the relation-

ship between energy consumption and fidelity in a way that 

enables system designers to select sensing, coding, and pro-

cessing modes that best achieve the desired tradeoff between 

these metrics. In addition, given the system dynamics of 

variable sensor data, channel characteristics, and application 

context, the energy-fidelity relationship changes at runtime, 

require dynamic mode adaptations. In certain contexts, a 

particular sensor may provide essential data that must be 

timely and of the highest quality, while other contexts may 

enable that sensor to be turned off to save energy. Such top-

down contextual information can be combined with bottom-up 

analysis in which a BSN node is empowered to determine how 

important real-time data is to an application. Overall, the 

system must continuously balance fidelity requirements with 

resource efficiency. 

To illustrate, consider on-node lossy compression of inertial 

data collected on a Parkinson’s Disease patients with the 

TEMPO BSN in a human subjects study on the efficacy of 

deep brain stimulation for tremor control [45][46]. As illus-

trated in Figure 12, lower data rates result in higher distor-

tions, which correspond to lower energy consumption (fewer 

bits to transmit) but lower data fidelity. The figure also shows 

that the energy-fidelity relationship is a function of the data. 

For example, scaling the “Stationary Small Tremor” data rate 

to 1-bit (from 12-bits, normalized per sample), equates to a 

12X reduction in data rate – and a substantial savings in BSN 

node energy – with minimal resultant mean squared error 

(MSE) distortion, but scaling the “Stationary Large Tremor” 

to 1-bit, would result in a much larger distortion and perhaps 

an unacceptable loss of application fidelity. 
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 This observation points to the need for application- and 

individual-specific profiling to effectively manage the energy-

fidelity tradeoff. Moreover, it is interesting to note that Figure 

12 presents data collected from a single patient over the course 

of a single clinical visit, which elucidates the need for system 

adaptation based on dynamic data. To illustrate further, Figure 

13 depicts a time domain distortion plot for fixed data com-

pression, yielding a compression ratio (CR) of approximately 

18, for a 40 minute tremor dataset. If an MSE ≤ 100, for 

example, were required for application fidelity to remain 

acceptable, then any distortion below this level would be 

considered energy inefficient (marked as the lower region in 

Figure 13) because data rate could be further reduced to meet 

the application requirement; and data above this level would 

not have high enough fidelity to meet the requirement (upper 

region). Only by dynamically adjusting a data rate knob would 

the node operate in an application-specific energy-fidelity 

optimized range (middle region). Similarly, variable wireless 

channel quality can affect the energy cost of transmission (due 

to retransmissions, stronger ECC, higher transmission 

strengths, etc.) and contextual information can affect the 

measure of fidelity (different information may be of value for 

different locations, activities, incidents, etc.), pointing to 

another need for dynamic adaptation. 

 Using the same 40 minute tremor dataset in Figure 13 and 

the BSN node energy model and distortion profiling tech-

niques presented in [47], the average MSE and energy per bit 

were calculated for scenarios where the compression ratio 

(Haar level for this example) is statically fixed and where it is 

varied dynamically based on real-time measures of variance, 

which was shown to be a good proxy to determine the instan-

taneous energy-fidelity relationship. Processing overheads for 

performing Haar compression and variance calculation using 

128-sample windows are included in the energy model, along 

with power management schemes that put the processor to 

sleep when inactive. The static setting is swept across all 

possible Haar levels, while dynamic management results in a 

single outcome for the given data set and optimization objec-

tive. As shown in Figure 14, the dynamic compression scheme 

operates in a region that is well under the Pareto-optimal curve 

of the static case. 

 New work can explore data-specific energy-fidelity rela-

tionships provided by not only on-node processing (which also 

includes classification, event detection, feature extraction, 

etc.), but also for sensing (i.e. what sensors to have on when 

and at what sampling rate and quantization bit depth) and 

coding (i.e. how to best code for wireless transmission). Based 

on these relationships, control schemes can be devised that 

dynamically manage energy and fidelity based on real-time 

measures of sensed data, channel quality, and context. 

IV. OPEN RESEARCH CHALLENGES 

The vision for BSNs presented above addresses many of the 

CPS challenges relating to application demands, hardware 

platforms, and wireless communications. We now briefly 

present several overarching and open challenges for BSNs. 

A. QoS and Fidelity 

A formal methodology for the design and runtime manage-

ment of QoS requires identifying quantitative contributing 

metrics and techniques for combining them to form a single 

QoS assessment. Ultimately, the selection of metrics and the 

weight they are given is application dependent, but nearly all 

candidate BSN applications share requirements for high 

application fidelity and long battery life, and many call for 

high throughput and low latency. 

In essence, a high QoS must be achieved under severe re-

source constraints, complex environments, and varying 

application semantics and context. While a layered approach 

to QoS management is appropriate for more resource-heavy 

systems, BSNs require an integrated, multi-scale approach 

 
Figure 12. .Example rate-distortion for compressed tremor data [50]. 

 
Figure 13. Dynamic distortion of tremor data for a fixed CR [50]. 

 
Figure 14. Static vs. dynamic Haar compression [50]. 
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capable of finding operating points across system levels to 

maximize QoS metrics based on application-specific require-

ments and dynamic operating conditions. This is especially 

important considering that each system level in a BSN affects 

all of the other levels, making the level-independent selection 

of QoS operating points suboptimal. QoS management from a 

multi-scale scale perspective must also be explored by creat-

ing BSN system models that not only leverage the optimiza-

tions that can be performed at individual system levels (node-

level and intra- and extra-BSN networking), but also consider 

how such optimizations affect the levels above and below it. It 

is also necessary to validate and improve QoS optimization 

strategies by experimenting on physical BSN systems in real 

application settings to ensure realistic BSN system models. 

High reliability and application fidelity are essential for 

many BSN applications – especially where “medical-grade” 

reliability is required – but can be quite difficult to achieve. 

One key challenge arises from the communication difficulties 

due to body motions, user mobility, co-existence of many 

BSNs in the overall system, interference from other wireless 

devices found in the environment, and other dynamics caused 

by realistic environments with obstacles and movement. It can 

also be expected that individual BSNs may become “de-

tached” from the infrastructure system at times, so delay 

tolerant networking solutions may be required. 

Another QoS challenge relates to the quantitative evaluation 

of reliability and application fidelity. Current level-specific 

mechanisms for these metrics include signal-to-noise ratio 

(SNR), inverse bit error rate (1/BER), and packet reception 

ratio (PRR). While these are useful measures for some aspects 

of QoS assessment, they do not necessarily directly correlate 

with application fidelity because they are inherently applica-

tion-independent. For example, an application focused on 

tremor assessment in Parkinson’s Disease patients is ultimate-

ly most interested in the resulting rates of correct diagnoses, 

courses of treatment, etc. Those are ultimately the kinds of 

quantitative reliability and fidelity metrics that must be incor-

porated into QoS design and runtime management. 

B. Robustness 

Traditionally, the majority of sensor based systems have 

been closed systems. Creating robust systems in these settings, 

while not easy, has been the subject of research for many 

years. However, BSNs are not closed systems. They move 

around in arbitrary environments and upload various physio-

logical data to doctors in real-time. Current software/hardware 

composition techniques, associated analysis techniques, and 

tools need to be re-thought and developed to account for BSNs 

operating in open and heterogeneous environments. New 

unified communications interfaces will be required to enable 

efficient information exchange across diverse systems and 

nodes.  

After initialization, BSNs have certain properties. For ex-

ample, the nodes of the BSN know their locations, have 

synchronized clocks, know their neighbors or aggregator, and 

have a coherent set of parameter settings such as consistent 

sleep/wake-up schedules, appropriate power levels for com-

munication, and pair-wise security keys. However, over time 

these coherent states can deteriorate. The most common 

example of this deterioration problem is clock drift, which 

causes nodes to have different enough times to result in 

application failures. For robustness with respect to time, clock 

synchronization must re-occur. Re-running protocols to re-

establish BSN properties is an important robustness issue. 

Robustness must also make use of formal methods to develop 

reliable code, use in-situ debugging techniques, and provide 

on-line fault tolerance, in-field-maintenance, and general 

health monitoring services. Problems are exacerbated due to 

the unattended operation of the system, the need for a long 

lifetime, the openness of the systems, and the realities of the 

physical world.  

C. Safety 

The safety of sophisticated new health care systems that 

include BSNs has not received the attention that developing 

novel functionality has. What is required is a systematic, 

multi-disciplinary research program to tackle the safety 

challenges raised by the increasing synergy of health care and 

engineering. Of particular concern are the many medical 

technologies that are built as stove piped systems. Each 

addresses aspects of safety to some limited extent, but there is 

no coordinating blueprint for ensuring interoperable and safe 

operation of the resulting system of systems. Further, a loom-

ing danger is the market pressure that favors functionality over 

demonstrated quality as exemplified by major commercial 

software applications that ship with known defects.  

In order to create and maintain safety in next-generation 

medical environments we must have radically new solutions 

that are aware of the complexities, intricacies and dynamics of 

the physical world, as well as being aware of human behav-

iors, disease information, and external knowledge such as 

product safety studies. Explicit demonstration of safety on an 

ongoing basis is also essential because of the dynamic nature 

of engineered healthcare systems.  

D. Security and Privacy 

A fundamental problem that must be solved in BSNs is 

dealing with security attacks [48]. Security attacks are prob-

lematic for BSNs because of the minimal capacity devices 

being used and the openness of the systems, including the fact 

that most devices will communicate wirelessly. The security 

problem is further exacerbated because transient and perma-

nent random failures are commonplace and failures are vul-

nerabilities that can be exploited by attackers. To meet realis-

tic system requirements that derive from long lived and 

unattended operation, BSNs must be able to continue to 

operate satisfactorily in the presence of, and to recover effec-

tively from security attacks. Cryptographic keys must be 

distributed securely. The system must also be able to adapt to 

new attacks unanticipated when the system was first deployed. 

It is an open question as to the type of hardware support 

required and how the layers of software can deal with these 

difficult problems. 
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BSNs provide many useful services for individuals, but also 

create many opportunities to violate privacy. To solve the 

privacy problem created by wireless BSNs, the privacy poli-

cies for a BSN must be specified. Once specified the BSN 

system must enforce privacy. Consequently, the system must 

be able to express users’ requests for data access and the 

system’s policies such that the requests can be evaluated 

against the policies in order to decide if they should be granted 

or denied. One of the more difficult privacy problems is that 

systems may interact with other systems, each having their 

own privacy policies. Consequently, inconsistencies may arise 

across systems. On-line consistency checking and notification 

and resolution schemes are required. Since BSNs communi-

cate wirelessly, privacy can be violated by eavesdropping. It 

has been shown [49] that encryption alone is not sufficient to 

ensure privacy due to eavesdropping. New cost effective 

techniques are needed. 

V. SUMMARY 

BSNs are important cyber-physical systems that promise to 

improve quality of life through improved health, augmented 

sensing and actuation for the disabled, independent living for 

the elderly, and reduced healthcare costs. We described the 

state of art that has primarily investigated several key applica-

tions and off-the-shelf hardware and communication quality. 

We also described a new BSN hardware platform that inte-

grates novel circuit designs and cutting-edge technologies to 

reduce the cost of communication and computation by several 

orders of magnitude. New cross-layer solutions that incorpo-

rate the unique characteristics of this platform at all layers of 

the BSN application stack were presented. Such a design 

produces techniques to adaptively balance changing top-down 

QoS demands and bottom-up resource and energy availability. 

We also described techniques to create bi-directional infor-

mation flow across multiple layers of the system from the HW 

to the application, allowing all layers to exploit both high-

level information about physical context (such as location or 

physical activity) and low-level system information (such as 

direct sensing of the wireless channel or physical environ-

ment). The value of adaptive sensing, communication, and 

data fusion were also discussed. Finally, a summary of over-

arching challenges was presented. 
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